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A set of “backward” virtual population analysis (VPA) equations relate5 catch ( C , )  from continuous fishing 
between times t and t + 1 to population size ( N , ,  N, + ,) when a portion of the stock is unavailable to frshing 
The usual VPA equations become a special case where the entire stock i s  avaitable ( I  e the stock is hornoge- 
neous) A close approximation to the VPA equations is N ,  = N , ,  , exp(Mj + C,M/(1 - exp(-M)),  which has 
properties similar to Pope’s “cohort analysis” and is somewhat more accurate in the case of a continuous fishery, 
especially i f  the natural mortality rate ( M )  is large Much closer simple approximations are possible if the Seasonal 
pattern of catches is known 

Une serie d’equations d’analyse de population virtuelle (APV) (( a rebours N lie les prises ( C , )  tirees de la *he 
continue entre les temps t et t + 1 a la taille de la population (N, ,  N ,  + , l  quand une partie du stock n‘est pas 
disponible pour la pPche. Les equations habituelles d’APV deviennent u n  cas special la ou le stock en entier est 
disponible (c.-a-d. que le stock est homogene). Une approximation etroite des equations d’APV est N,  = 
N , ,  exp(M) + C I M / ( l  - exp(-M)) qui a des proprietes wmblables a l’analyse par cohortes de Popeet est un  
peu plus precise dans le cas d‘une p&he continue, surtout si le taux de mortalitr?naturelle ( M )  est important. Des 
approximations simples beaucoup plus aroites sont possibies si I’on connait la tendance saisonniere des prises. 
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V irtual population analysis (VPA), also known generi- 
cally as cohort analysis, has come to be the preeminent 
method of fish stock assessment since its appearance 
20 yr ago (Gulland 1965; Murphy 1965). The method 

usually is used in the form of a “backwards solution” where 
historical abundances of a cohort are estimated on the basis of 
subsequent catches from a presumed homogeneous stock: all 
fish of a specified age are assumed to be equally susceptible to 
capture. The equations unfortunately do not allow convenient 
separation of the unknown quantities from the known and/or 
assumed quantities, so the solution must be obtained by numer- 
ical methods, e .g .  Sims (1982). or by approximation, e.g. 
Pope’s (1972) popular “cohort analysis.” Computers have 
made numerical solution very easy, but there remain applica- 
tions of approximation methods. For example, Pope’s approx- 
imation has proved useful for statistical and mathematical anal- 
ysis of the behavior of VPA, whereas the exact equations are 
intractable. In practice, good approximations and efficient al- 
gorithms remain useful, as computers may not conveniently be 
available in working group meetings, in field locations, and in 
some developing countries. 

The following discussion provides two extensions to existing 
VPA methods. The first is a set of equations which include 
possible assumptions concerning homogeneity of cohorts, i.e. 
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part of the cohort may not be available or vulnerable to fishing. 
These equations also provide the basis for an easy and rapid 
iterative backward solution of the VPA equations. The second 
is description of a family of approximation formulas which are 
similar in concept to Pope’s cohort analysis. 

VPA Equations For Nonhomogeneous Populations 
Assume that the cohort consists of two segments, one fished 

and one unfished (cf. Widrig 1954). This division could arise 
under a variety of circumstances. For example, some members 
of the cohort may reside in habitats or regions which cannot be 
fished. Another possibility is differential vulnerability to the 
gear, depending on fish size or other attribute. The present 
treatment corresponds to the common model of “knife-edge” 
gear selection. Importantly, there must be no interchange be- 
tween the two segments during the time interval. Let P be the 
age-specific fraction of the cohort which is subject to fishing at 
the beginiring of a time interval. The remaining notation fol- 
lows that of Ricker (1975), except that F refers to the instanta- 
neous coefficient of fishing mortality on the fishable segment 
of the cohort. As usual, F and M are assumed to be indepen- 
dent, and M has the same value in both segments. Both of these 
assumptions are open to question (e.g Lawless 1982, p. 491; 
Ricker 1976), but there seems to be no practical alternative 
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given the usual state of knowledge. All parameters are assumed 
to be constant within the time period, but may vary among ages 
or time periods. A full notaticn is useful for fishery analysis, 
but requires extensive use of subscripts denoting age and time; 
this notation can be developed by the reader for particular 
applications (Schnute 1985 provides a useful structure for this 
purpose). The present notation is simplified for ease of exposi- 
tion, and considers a single cohort and a unit time period. The 
time subscript t is shown only where desirable for clarity. 
Under continuous fishing, the catch (C,)  for a unit time period 
beginning at time t ,  and ending at time r + I ,  is given by 

( I )  C, = N , P F A / Z  

where Z = F + M,  and A = I - exp( -Z). The abundance at 
the beginning of the next time period is 

(2)  
where the two additive terms on the right side represent con- 
tributions from the fished and the unfished segments, re- 
spectively. This expression may be rearranged to give 

(3) N, , I = N , P  [exp(-Z) - exp(-M)] + N,exp(-M) 

and equation ( I )  allows substitution of C,Z/FA = N , P ,  giving 

(4) 
where m = 1 - exp ( - F ) .  The backward solution therefore is 

( 5 )  

N , ,  I = N,Pexp(-Z) + N,(l-P)exp(-M) 

N,  , I = ( N ,  - C,mZ/FA)exp(-M) 

N, = N , ,  I exp(M) + C,mZ/FA 

Equations (4) and (5) also can be derived from the equations 
describing the usually assumed homogeneous case. However, 
because P appears in equations ( I )  and (2) ,  but not in (4) or ( 5 ) ,  
this derivation demonstrates that they have the somewhat sur- 
prising property of being true whether or not the homogeneity 
assumption ( P  = 1) is met, provided that F is defi:ned uppropri- 
utely. These equations also demonstrate that for a given catch 
and natural mortality rate, the four variables, N,, N, , I, P ,  and 
F ,  possess only two degrees of freedom among them. This 
means that specification of any two values should determine 
both remaining values, but this property may be of limited use 
as the basis for direct parameter estimation (e.g. for a given 
catch, F and P covary strongly, and estimation errors could 
easily lead to misinterpretation). In practice, one value is given; 
for example, in the case of a backwards solution, N,  + I may 
have been provided by an initial guess or by VPA of older aged 
catches. The second value is imposed by a simultaneous equa- 
tion which may explicitly or implicitly fix P (see equations (6) 
and (7), respectively). Equation (5) is aesthetically attractive in 
that it clearly expresses the sense of “virtual population” as a 
modified sum of subsequent catches. 

There are many possible equations which give F as a func- 
tion of P ,  N,, N ,  + I, and M ,  depending on the assumed behavior 
and distribution of the stock and fishery. Differences among 
these equations become especially important when they are 
applied sequentially to link successive ages, as is the usual case 
in VPA. For example, equation (2) can be rearranged 
algebraically to give 

( P -  I )N,  + N , , , e x p ( M )  
P N ,  

(6) F = -In [ 
However, if P is treated as an independent population para- 
meter, sequential use of this equation must be based on an 
assumed redistribution of all of the survivors at the end of each 
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Flc. I .  Relative error (see text for definition) of Pope’s and the new 
approximation for a homogeneous stock ( P  = I )  and two values of M .  
For comparison, the relative error of the result of the first iteration of 
the VPA algorithm is shown for M = I ,  where relative error is defined 
as ( ( A ? / F A ) / ( ~ z / F A ) )  - I .  

time period, so that the individuals in the fished and unfished 
segments have no differential tendency to remain in their pre- 
vious states. Alternatively, if P can be estimated independently 
for individual ages and times, perhaps from surveys of habitat 
distribution or of size composition, equation (6) allows ex- 
ploitation rates to be separated into component sources of vari- 
ation: those associated with changes in P and those associated 
with changes in F on the available segment. This form of 
“separable VPA” (sensu Doubleday 1976) is being developed 
by Daniel Kimura (NMFS-NWAFC, BIN C15700, 7600 
Sandpoint Way N.E., Seattle, WA 981 15, USA, manuscript in 
revision). Of course, in the case of homogeneity ( P  = I ) ,  
equation (6) simplifies to 

(7) F = , ln(N,/N, + - M 

as was suggested by Pope ( 1972). 
Equations (5) and (7) also provide a convenient rapid algo- 

rithm for solving the usual VPA equations for a homogeneous 
stock. The procedure is as follows: ( I )  given C,, N ,  , I, and M, 
use Pope’s approximation or the improved approximation de- 
scribed below to obtain a first estimate of N , ;  (2) use this value 
of N ,  in equation (7) to obtain an estimate of F ;  (3) use this 
value of F in equation ( 5 )  to get an improved estimate of N , ;  
(4) repeat steps 2 and 3 until the desired level of precision is 
reached, judging by the change from the estimate in the pre- 
vious iteration; and ( 5 )  repeat the procedure on the next 
younger age of the cohort, letting the previous N, now be 
N ,  + , , and go to step 1. The rate of convergence is very high 
(Fig. I ) ,  approaching that of Newton’s method as described by 
Sims (1982); two iterations often are sufficient. Also, this 
method does not converge to extraneous solutions. 

A Family of Approximations 

The independence of C, in equation ( 5 )  indicates that there 
exists a family of VPA approximations of the form 

(8) &, = N ,  , ,exp(M) + C , V ( F , M , .  . . )  

where &, is an approximation of N,  and V ( F , M , .  . . )  is a 
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function approximating the value of r d / F A .  These approxi- 
mations are applicable to nonhomogeneous fisheries ( P  # I )  as 
well as the more commonly assumed homogeneous fisheries. 
In  the case of nonhomogeneous Fisheries, these equations need 
to be coupled with an equation such as ( 6 ) .  

Pope’s (1972) cohort analysis is a member of this family of 
approximations. where V = exp(M/2):  

(9) 
Another approximation is provided by a first-order Taylor 
series approximation of the exponentials in the left side of the 
expression 

( I O )  I I I I I / A  = F M / Z  

where I I  = I -exp(-M). Rearrangenient of ( I O )  gives 

( 1 1 )  

which may be substituted into equation ( 8 )  to give 

(12) 
Thc relative accuracy of approximations (9) and ( 1 2 )  can be 

expressed 21s the relative error in V ,  the coefficient of C,; the 
remaining terms of the equations are identical and tend to 
reduce clarity of the comparisons. Also. because equations (9) 
and (12)  are linear in C, errors in the coefficients propagate in 
a straightforward manner. Let the “relatjve error” ( r , )  of an 
approximation, X ,  be defined as r ,  = ( X  - X ) / X ,  or equiv- 
alently, r ,  = ( X / X ) - l ,  where X is the true value. In  the 
present case, the approximation is the coefficient applied to C, 
in equations (9) and (12). and the true value is the coefficient 
mZ/FA in equation ( 5 ) ) .  Thus, the relative error for Pope’s 
approximation ( r , , , ) )  is 

i, = N ,  + ,exp(M) + C , e x p ( M / l )  

V = t t r Z / F A  = MII  

&’, = N ,  , ,exp(M) + C , M / n  

.35 

where exp(M/2)  is Pope’s cohort analysis coefficient of C,. 
Similarly, the relative error of the new approximation in equa- 
tion ( 12) is 

-’ 

-. 

Relative errors for these two approximations are compared in 
Fig. I ;  generally. the differences are not large. The relative 
error of the new approximation in equation ( 12)  is slightly but 
consistently smaller than that of Pope’s approximation. The 
new approximation becomes considerably better than Pope’s as 
M becomes large. thus extending the range of mortality rates 
under which approximation is useful. Taylor series expansions 
of the relative errors, equations ( 13) and (14). clarify the nature 
of the difference between the two approximations. If we dis- 
card terms higher than quadratic, the relative error for Pope’s 
approximation is (2FM + M’)/24, whereas that of the new 
approximation is (2FM)/24. The constant factor of M’/24 in 
Pope’s relative error explains both its nonzero intercept at 
F = 0 and the parallel appearance of the plots in Fig. I .  

Pope’s approximation is equivalent to assuming that the en- 
tire catch is taken instantaneously at midyear. The new approx- 
imation does not have a corresponding convenient inter- 
pretation. A tentative interpretation may be derived from the 
relationship fi = N,,n/M, which describes average abundance 
(N) over a unit  time interval versus initial abundance ( N , , ) ,  if 
only natural mortality is acting. Thus, the quantity M / n  used 
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FIG. 2 .  Comparison of monthly catch distribution under the assump- 
t ion  of constant F and that from a scasonal fishery (the California catch 
of mackerel in 1941 -42, Anonymous 1944). 

in the new approximation is equal to N , , / N  if there is only 
natural mortality. Paradoxically, this nicans that the new ap- 
proximation assumes the fishery’s catch to be a continuous 
sampling of natural deaths in the absence of a fishery. This 
somewhat strange interpretation is consistent with the fact that 
the new approximation is identical to the expression which 
results from taking the limit of equation ( 5 )  for a given catch 
as F -+ 0. 

VPA Approximation for Seasonal Fisheries 

The usual assumption in VPA is that F is constant over the 
time interval under consideration. This assumption requires 
that the catch decline exponentially over that interval. Many, if 
not most, fisheries are seasonal, so the pattern of catches over 
the year or season does not conform to this assumption (Fig. 2). 
A standard practice in these cases is to divide the fishing year 
into shorter time periods such as quarters or months, within 
which F is more nearly constant. 

If the seasonality of the fishery is predictable, a useful ap- 
proximation can be developed as follows. I f  the exact time ( t , )  
of each catch ( C , )  were known, VPA equation (8) would re- 
duce to 

(15) N ,  = N ,  + ,exp(M) + c C , e x p ( ( r ,  - t d M )  

where t u  is the beginning of the fishing year. Equivalently, if 
the proportion ( p , )  of the total catch ( C , )  taken at time t ,  is 
known, we have 

(16) N ,  = N ,  ,exp(M) + C ,  2 p , e x p ( ( f ,  - W O .  

Equation (16) has the same form as equation (8),  demonstrating 
that seasonal fisheries can be treated by the same family of 
approximations. Moreover, equation ( 16) requires information 
only on M and the temporal distribution of catches, making 
function V,,,,, and hence the VPA, independent of estimated F.  

In practice, the value of V,,, for a seasonal fishery can be 
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obtained from sequential VPA of the typical monthly propor- 
tions of the total annual catch (see example below). By setting 
N ,  , I to zero. V,,,,, is given directly by the virtual population 
of the p ,  values at time t,,. this being equivalent to the sum- 
mation in equation (16). 

Application of Approximations 

Parrish and MacCall (1978) gave VPA estimates for mack- 
erel (Scomhcr ,juponicu.s), based on annual catch-at-age data, 
M = 0.5, and assumed constant F within the fishing season. 
Estimated F for fish aged 4 and older in the 1941-42 fishing 
year (May through April) was I .  I IS, giving a V,,,,,,,, of m Z / F A  
= I .2152. The monthly proportions of the total unaged annual 
catch are based on Anonymous (1944) and are shown in 
Fig. 2. These monthly catches are in weight rather than num- 
bers, causing some error due to individual growth during the 
year. A value of V,,,,, can be approximated by letting V,,r,n,h = 
( M /  12)/( I -exp(-M/I2)) .  The annual value of V based on 
the seasonal catch distribution is approximately 

(17) V,,,,, = 2: p,V,,,,,,,exp((i - l ) M / 1 2 )  

giving V,,,,, = 1.285 I .  Thus, the relative error of Parrish and 
MacCall's annually based VPA is approximately -5.4% for 
this year, indicating a moderate underestimate of abundance. 
given the assumptions. Interestingly, the new VPA approxi- 
mation in equation (12)  gives V,,,, = 1.2707, and Pope's ap- 
proximation gives a nearly exact value of V,,,,,, = 1.2840. 
Pope's approximation does well because in this case the actual 
catch was indeed taken very near midyear. Of cwrse ,  other 
seasonal distributions may produce values of V,,,, ranging from 
I .O (all the catch taken at year's end) to exp(M) if all of the 
catch is taken at the beginning of the year. 

Differences in VPA estimates of abundance due to various 
homogeneity assumptions and/or approximations often fall 
within the variability due to imprecision in the value of the 
natural mortality rate, M .  For example. given M = 0.5 and 
constant F = 0.5, Pope's approximation using M = 0.48 would 
have the same relative error as the new approximation using 
M = 0.5. The difference becomes larger for large M :  given 
M = I .0 and constant F = I .O, Pope's approximation would 
require M = 0.92 to produce a relative error equal to that of the 
new approximation. Violations of the assumption of constant F 
over the time period can produce somewhat larger errors. The 
relative error of Parrish and MacCall's annual VPA in the 
preceding example is roughly equal to the relative error which 
would have occurred if they had used a seasonally corrected 
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VPA with M = 0.39, which is 22%' smaller than assumed M .  
It can be argued that the choice of approximations is incon- 

sequential because imprecision associated with alternative 
VPA approximations and assumptions is smaller than that asso- 
ciated with imprecision in assumed M .  A counterargument is 
that errors due to approximations or assumptions are systematic 
biases and should be recognized as such. I f  a value of M is 
stated,VPA using that M should as nearly as possible reflect 
that value, rather than some systematically different effective 
value arising from the properties of an unnecessary assumption 
or approximation. 
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